Published in

American Institute of Physics, The Journal of Chemical Physics, 13(141), p. 134701

DOI: 10.1063/1.4896611

Links

Tools

Export citation

Search in Google Scholar

The mechanism of chemisorption of hydrogen atom on graphene: Insights from the reaction force and reaction electronic flux

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

At the PBE-D3/cc-pVDZ level of theory, the hydrogen chemisorption on graphene was analyzed using the reaction force and reaction electronic flux (REF) theories in combination with electron population analysis. It was found that chemisorption energy barrier is mainly dominated by structural work (∼73%) associated to the substrate reconstruction whereas the electronic work is the greatest contribution of the reverse energy barrier (∼67%) in the desorption process. Moreover, REF shows that hydrogen chemisorption is driven by charge transfer processes through four electronic events taking place as H approaches the adsorbent surface: (a) intramolecular charge transfer in the adsorbent surface; (b) surface reconstruction; (c) substrate magnetization and adsorbent carbon atom develops a sp(3) hybridization to form the σC-H bond; and (d) spontaneous intermolecular charge transfer to reach the final chemisorbed state.