Published in

American Chemical Society, Journal of Physical Chemistry C, 30(118), p. 16393-16400, 2014

DOI: 10.1021/jp410279z

Links

Tools

Export citation

Search in Google Scholar

Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A simple optical model is presented to describe the influence of a planar luminescent down-shifting layer (LDSL) on the external quantum efficiencies of photovoltaic solar cells. By employing various visible light-emitting LDSLs based on CdTe quantum dots or CdSe/CdS core–shell quantum dots and tetrapods, we show enhancement in the quantum efficiencies of thin-film CdTe/CdS solar cells predominantly in the ultraviolet regime, the extent of which depends on the photoluminescence quantum yield (PLQY) of the quantum dots. Similarly, a broad enhancement in the quantum efficiencies of crystalline Si solar cells, from ultraviolet to visible regime, can be expected for an infrared emitting LDSL based on PbS quantum dots. A PLQY of 80% or higher is generally required to achieve a maximum possible short-circuit current increase of 16 and 50% for the CdTe/CdS and crystalline Si solar cells, respectively. As also demonstrated in this work, the model can be conveniently extended to incorporate LDSLs based on organic dyes or upconverting materials.