Published in

Oxford University Press, Endocrinology, 11(152), p. 4138-4147, 2011

DOI: 10.1210/en.2011-0178

Links

Tools

Export citation

Search in Google Scholar

Cellular Leptin Resistance Impairs the Leptin-Mediated Suppression of Neuropeptide Y Secretion in Hypothalamic Neurons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Evidence shows that neuropeptide Y (NPY) neurons are involved in mediating the anorexigenic action of leptin via neuronal circuits in the hypothalamus. However, studies have produced limited data on the cellular processes involved and whether hypothalamic NPY neurons are susceptible to cellular leptin resistance. To investigate the direct regulation of NPY secretion by leptin, we used novel NPY-synthesizing, immortalized mHypoA-NPY/green fluorescent protein and mHypoA-59 hypothalamic cell lines derived from adult hypothalamic primary cultures. We report that leptin treatment significantly suppressed NPY secretion in the cells by approximately 20%. We found a decrease in c-fos expression upon leptin exposure, indicating deactivation or hyperpolarization of the neurons. Protein analysis indicated that leptin inhibits AMP-activated protein kinase (AMPK) activity and activates acetyl-coenzyme A carboxylase in NPY neurons, supporting the hypothesis of an AMPK-dependent mechanism. Inhibiting both AMPK with Compound C or phosphatidylinositol 3 kinase (PI3K) with 2-(4-morpholinyl)-8-phenyl-1(4H)-1-benzopyran-4-one hydrochloride prevented the leptin-mediated decrease in NPY secretion, indicating both AMPK- and PI3K-mediated mechanisms. Further, NPY secretion was stimulated by 30% by the AMPK activator, aminoimidazole carboxamide ribonucleotide. Importantly, prolonged leptin exposure in the mHypoA-NPY/green fluorescent protein cells prevented leptin-induced changes in AMPK phosphorylation and suppression of NPY secretion, indicating that NPY neurons are susceptible to leptin resistance. Our studies indicate that AMPK and PI3K pathways are involved in leptin action in NPY neurons and that leptin resistance blocks the feedback response likely required to maintain energy homeostasis.