Elsevier, Journal of Non-Crystalline Solids, 18-21(353), p. 1870-1874
DOI: 10.1016/j.jnoncrysol.2007.02.017
Full text: Unavailable
The aim of this work is to study the influence of Ge addition on the optical and electrical properties in eutectic SbTe thin films (with the compositions: Sb70Te30, Ge2Sb70Te28, Ge5Sb70Te25 and Ge10Sb65Te25) using visible optical reflectance, ellipsometry measurements, near infrared transmittance spectra, and four probe electrical resistivity measurements. From near infrared transmittance measurements the optical band gap was determined using Tauc’s expression for amorphous materials, a value of about 0.47 eV was obtained without any clear dependence on the Ge content. All amorphous films have approximately the same reflectance value, however the contrast ratio between the crystalline and amorphous phases decrease with increase of Ge. Using in situ four probe measurements versus temperature the dependence of the activation energy of conductance and the onset of the crystallization temperature have been determined for different materials. Four probe measurements have shown that the resistivity of amorphous films increases with increase of Ge. The results obtained have shown that optical and electrical properties of SbTe films with near eutectic composition change with the Ge content and depending on the application, in either optical or electrical memory devices, the most suitable composition needs to be determined.