Published in

Elsevier, Construction and Building Materials, (82), p. 45-52

DOI: 10.1016/j.conbuildmat.2015.02.052

Links

Tools

Export citation

Search in Google Scholar

Compressive behaviour of brick masonry triplets in wet and dry conditions

Journal article published in 2015 by Elisa Franzoni ORCID, Cristina Gentilini, Gabriela Graziani, Simone Bandini
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mechanical behaviour of old masonry may differ from the theoretical one to a great extent, hence it needs to be properly evaluated for quantifying the safety and serviceability of real structures, in view of their rehabilitation and/or seismic reliability assessment. Among the factors affecting such behaviour, the presence of moisture, mainly from rising damp, plays a key role in the deterioration state of old masonry structures, owing to salt crystallisation, frost damage, etc. Besides, water presence in the material pores may also directly influence their mechanical properties (compressive and tensile strength, elastic modulus), due to the interactions with the pore surface, enhancement of crack propagation velocity and other mechanisms. Although the effect of water saturation has been investigated for clay-bearing rocks, ceramics and concrete, its consequences on the mechanical behaviour of brick masonry still requires in-depth elucidation. For this reason, in the present paper the compressive strength and Young’s modulus of fired-clay bricks, cement-based and lime-based mortars as well as masonry triplets are investigated, in dry and wet conditions. The results are interpreted in the light of the microstructural features of the materials, i.e., total voids amount and pores size distribution.