Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Organic Chemistry, 26(70), p. 10890-10890, 2005

DOI: 10.1021/jo052349g

American Chemical Society, Journal of Organic Chemistry, 20(70), p. 7963-7971, 2005

DOI: 10.1021/jo0510843

Links

Tools

Export citation

Search in Google Scholar

(+)- and (−)-2-Aminocyclobutane-1-carboxylic Acids and Their Incorporation into Highly Rigid β-Peptides: Stereoselective Synthesis and a Structural Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

[Chemical reaction: See text] Several derivatives of (+)- and (-)-2-aminocyclobutane-1-carboxylic acid, 1, have been prepared through enantiodivergent synthetic sequences. The stereoselective synthesis of free amino acid (+)-1 has been achieved, and this product has been fully characterized for the first time. Stereocontrolled alternative synthetic methodologies have been developed for the preparation of bis(cyclobutane) beta-dipeptides in high yields. Among them, enantio and diastereomers have been synthesized. beta,beta- and beta,delta-Dimers resulting from the coupling of a cyclobutane residue and a linear amino acid have also been prepared. The ability of the cyclobutane ring as a structure-promoting unit both in the monomers and in the dimers has been manifested. The NMR structural study and DFT theoretical calculations evidence the formation of strong intramolecular hydrogen bonds giving rise to cis-fused [4.2.0]octane structural units that confer high rigidity on these molecules both in solution and in the gas phase. The contribution of a cis-trans conformational equilibrium derived from the rotation around the carbamate N-C(O) bond has also been observed, the trans form being the major conformer. In the solid state, this equilibrium does not exist, and moreover, intermolecular hydrogen bonds are present.