Published in

American Society for Microbiology, Journal of Virology, 9(64), p. 4507-4515, 1990

DOI: 10.1128/jvi.64.9.4507-4515.1990

Links

Tools

Export citation

Search in Google Scholar

Loss of a phosphorylated form of transcription factor CREB/ATF in poliovirus-infected cells.

Journal article published in 1990 by S. Kliewer, C. Muchardt ORCID, R. Gaynor, A. Dasgupta
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Host cell RNA synthesis is inhibited by poliovirus infection. We have studied the mechanism of poliovirus-induced inhibition of RNA polymerase II-mediated transcription by using the adenovirus early region 3 (E3) promoter. In vitro transcription from the E3 promoter was severely inhibited in extracts prepared from poliovirus-infected HeLa cells. Four regions in the E3 promoter have been shown to serve as binding sites for cellular transcription factors. These regions contain binding sites for transcription factors NF-1 (site IV), AP-1 (site III), CREB/ATF (site II), and the TATA factor (site I). Binding to these four regions was not significantly altered by poliovirus infection as assayed by DNase I footprinting analysis; furthermore, gel retardation assays failed to reveal dramatic differences in the total amount of CREB/ATF-, AP-1-, and NF-1-binding activity present in mock- or poliovirus-infected cell extracts. Gel retardation assays, however, did reveal significant qualitative differences in the DNA-protein complexes formed with a CREB/ATF-binding site in extracts prepared from poliovirus-infected cells as compared to mock-infected cell extracts. Radioimmunoprecipitation reactions performed with antiserum against CREB/ATF revealed a severe reduction in a phosphorylated form of the protein present in poliovirus-infected cell extracts. However, in vitro kinase reactions demonstrated that mock- and poliovirus-infected cell extracts contained similar levels of CREB/ATF. Expression from the E3 promoter was shown to be activated by CREB/ATF in vivo; this induction was dependent upon the phosphorylation of CREB/ATF. Thus, we propose that poliovirus infection inhibits transcription from the E3 promoter, at least in part, through the dephosphorylation of CREB/ATF.