Dissemin is shutting down on January 1st, 2025

Published in

Wiley, European Journal of Biochemistry, 3(196), p. 545-549, 1991

DOI: 10.1111/j.1432-1033.1991.tb15848.x

Links

Tools

Export citation

Search in Google Scholar

Activation and induction by copper of Cu/Zn superoxide dismutase in Saccharomyces cerevisiae

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Cu/Zn superoxide dismutase activity of Saccharomyces cerevisiae was found to be strictly related to the extent of oxygen metabolism, since cells grown under anaerobic or repressed conditions were found to contain 10% and 40% the activity of derepressed cells, respectively. The dependence of Cu/Zn superoxide dismutase on oxygen was found to be related to the availability of copper to the cells since the enzyme activity and immunoreactive protein measured under the various conditions was roughly proportional to the copper content of cells and in anaerobic cells a large fraction of the enzyme was found to be in the form of an inactive proenzyme which was activated by the addition of copper to cell extracts. The Cu/Zn superoxide dismutase mRNA did not parallel the dependence of the enzyme concentration on oxygen metabolism, suggesting that the gene expression was affected by copper also at the post-transcriptional level. However, under conditions of copper overloading, a more direct effect on transcription was observed and the presence of the inactive proenzyme in anaerobic cultures was associated with the over-expression of metallothionein.