Published in

SAGE Publications, Annals of Clinical Biochemistry, 6(52), p. 699-701, 2015

DOI: 10.1177/0004563215597943

Links

Tools

Export citation

Search in Google Scholar

Telling biological time from a blood sample: current capabilities and future potential

Journal article published in 2015 by Malcolm von Schantz ORCID, Debra J. Skene ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Circadian rhythms, near-24 h oscillations that reflect homeostatic control by an internal timing system rather than the influence of external factors, are an important and sometimes underappreciated aspect of human physiology and biochemistry. Over the past few decades, the pineal gland hormone melatonin has been established both as a robust marker of circadian phase in plasma or saliva and as a chronobiotic drug administered to reset the timing of the circadian oscillator. Recent work by our own and other laboratories has sought to systematically investigate whole categories of molecular components in blood samples in a hypothesis-free fashion by employing metabolomic methodologies to study low molecular weight compounds and transcriptomic methodologies to study gene expression in white blood cells, respectively. A number of components have been pinpointed that show a rhythmic circadian variation or are affected by imposed factors such as sleep deprivation. Although melatonin, a robust and reliable circadian phase marker, will be a hard act to follow, these lines of research suggest numerous potential leads for useful new markers of biological timing.