Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Toxicon: An Interdisciplinary Journal on the Toxins Derived from Animals, Plants and Microorganisms, 7(60), p. 1251-1258, 2012

DOI: 10.1016/j.toxicon.2012.08.017

Links

Tools

Export citation

Search in Google Scholar

Isolation and characterization of moojenin, an acid-active, anticoagulant metalloproteinase from Bothrops moojeni venom

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A fibrinogenolytic metalloproteinase from Bothrops moojeni venom, named moojenin, was purified by a combination of ion-exchange chromatography on DEAE-Sephacel and gel filtration on Sephacryl S-300. SDS-PAGE analysis indicated that moojenin consists of a single polypeptide chain and has a molecular mass about 45 kDa. Sequencing of moojenin by Edman degradation revealed the amino acid sequence LGPDIVSPPVCGNELLEVGEECDCGTPENCQNE, which showed strong identity with many other snake venom metalloproteinases (SVMPs). The enzyme cleaves the Aα-chain of fibrinogen first, followed by the Bβ-chain, and shows no effects on the γ-chain. Moojenin showed a coagulant activity on bovine plasma about 3.1 fold lower than crude venom. The fibrinogenolytic and coagulant activities of the moojenin were abolished by preincubation with EDTA, 1,10-phenanthroline and β-mercaptoethanol. Moojenin showed maximum activity at temperatures ranging from 30 to 40 °C and its optimal pH was 4.0. Its activity was completely lost at temperatures above 50 °C. Moojenin induced necrosis in liver and muscle, evidenced by morphological alterations, but did not cause histological alterations in mouse lungs, kidney or heart. Moojenin rendered the blood uncoagulatable when it was intraperitoneally administered into mice. This metalloproteinase may be of medical interest because of its anticoagulant activity.