Published in

Springer Nature [academic journals on nature.com], Oncogene, 36(21), p. 5619-5630, 2002

DOI: 10.1038/sj.onc.1205658

Links

Tools

Export citation

Search in Google Scholar

Carcinogenesis and translational controls: TACC1 is down-regulated in human cancers and associates with mRNA regulators

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The three human TACC genes encode a family of proteins that are suspected to play a role in carcinogenesis. Their function is not precisely known; a Xenopus TACC protein called Maskin is involved in translational control, while the Drosophila D-TACC associates with microtubules and centrosomes. We have characterized the human TACC1 gene and its products. The TACC1 gene is located in region p12 of chromosome 8; its mRNA is ubiquitously expressed and encodes a protein with an apparent molecular mass of 125 kDa, which is cytoplasmic and mainly perinuclear. We show that TACC1 mRNA gene expression is down-regulated in various types of tumors. Using immunohistochemistry of tumor tissue-microarrays and sections, we confirm that the level of TACC1 protein is down-regulated in breast cancer. Finally, using the two-hybrid screen in yeast, GST pull-downs and co-immunoprecipitations, we identified two potential binding partners for TACC1, LSM7 and SmG. They constitute a conserved subfamily of Sm-like small proteins that associate with U6 snRNPs and play a role in several aspects of mRNA processing. We speculate that down-regulation of TACC1 may alter the control of mRNA homeostasis in polarized cells and participates in the oncogenic processes.