Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Biotechnology and Bioengineering, 9(109), p. 2211-2221, 2012

DOI: 10.1002/bit.24489

Links

Tools

Export citation

Search in Google Scholar

Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells

Journal article published in 2012 by Liping Huang, Linlin Gan, Ning Wang, Xie Quan, Bruce E. Logan, Guohua Chen ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The combined anaerobic-aerobic conditions in air-cathode single-chamber MFCs were used to completely mineralize pentachlorophenol (PCP; 5 mg/L), in the presence of acetate or glucose. Degradation rates of 0.140 ± 0.011 mg/L-h (acetate) and 0.117 ± 0.009 mg/L-h (glucose) were obtained with maximum power densities of 7.7 ± 1.1 W/m(3) (264 ± 39 W/m(2), acetate) and 5.1 ± 0.1 W/m(3) (175 ± 5 W/m(2), glucose). At a higher PCP concentration of 15 mg/L, PCP degradation rates increased to 0.171 ± 0.01 mg/L-h (acetate) and 0.159 ± 0.011 mg/L-h (glucose). However, power was inversely proportional to initial PCP concentration, with decreases of 0.255 W/mg PCP (acetate) and 0.184 W/mg PCP (glucose). High pH (9.0, acetate; 8.0, glucose) was beneficial to exoelectrogenic activities and power generation, whereas an acidic pH = 5.0 decreased power but increased PCP degradation rates (0.195 ± 0.002 mg/L-h, acetate; 0.173 ± 0.005 mg/L-h, glucose). Increasing temperature from 22 to 35°C enhanced power production by 37% (glucose) to 70% (acetate), and PCP degradation rates (0.188 ± 0.01 mg/L-h, acetate; 0.172 ± 0.009 mg/L-h, glucose). Dominant exoelectrogens of Pseudomonas (acetate) and Klebsiella (glucose) were identified in the biofilms. These results demonstrate that PCP degradation using air-cathode single-chamber MFCs may be a promising process for remediation of water contaminated with PCP as well as for power generation.