Published in

Elsevier, Journal of Colloid and Interface Science, 1(362), p. 21-32

DOI: 10.1016/j.jcis.2011.05.066

Links

Tools

Export citation

Search in Google Scholar

Solid-state synthesis of embedded single-crystal metal oxide and phosphate nanoparticles and in situ crystallization

Journal article published in 2011 by C. Díaz, M. L. Valenzuela, D. Bravo, C. Dickinson, C. O'Dwyer ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP(2)O(7), TiO(2), P(4)O(7,) WP(2)O(7) and SiO(2), depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2-6 nm for all products. While all nanoparticles are new by this method, WP(2)O(7) and SiP(2)O(7) nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP(2)O(7) was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO(2) and P(4)O(7). The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P(4)O(7) affects the nanocrystalline products: nanoparticles are observed for WP(2)O(7), with coalescing crystallization occurring for the amorphous host in which SiP(2)O(7) crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium-ion cathode materials, catalysis and nanocrystal embedded dielectric layers.