Published in

American Geophysical Union, Reviews of Geophysics, 2(38), p. 267-294, 2000

DOI: 10.1029/1998rg000045

Links

Tools

Export citation

Search in Google Scholar

Organic atmospheric aerosols: review and state of the science. Rev Geophys

Journal article published in 2000 by M. C. Jacobson, H.-C. Hansson, K. J. Noone, R. J. Charlson
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Atmospheric aerosol particles are known to contain organic carbon material in variable amounts, depending on their location. In some parts of the world, organic compounds make up the majority of the total suspended particle mass. This class of particulate matter is important in a wide range of geophysical and environmental problems, ranging from local issues (e.g., pollution toxicity) to the global scale (e.g., climate change). Unfortunately, the richness of organic chemistry and the highly variable physical properties associated with both natural and anthropogenic organic particles lead to great difficulties in sampling and obtaining complete chemical information on these materials. These obstacles result in an incomplete picture of a potentially significant part of atmospheric chemistry and a correspondingly poor understanding of the geophysical and environmental effects of this aerosol. Given the paucity of quantitative molecular data, the purpose of this paper is not to quantitatively describe the importance of organic aerosols in environmental issues, but rather to present a basis for defining what data are needed. With this goal in mind, we begin with an overview of the major environmental issues known to be affected by organic aerosols, followed by a description of the distribution, sources, and chemical and physical properties of organic aerosols as they are currently understood. Methods used to collect and study organic aerosols are provided, followed by a list of outstanding scientific questions and suggestions for future research priorities.