American Chemical Society, Journal of Agricultural and Food Chemistry, 2(55), p. 323-329, 2006
DOI: 10.1021/jf0622883
Full text: Download
Riboflavin (Rf)-mediated photosensitized degradation of vitamins A and D3 in skimmed milk under illumination with a white fluorescence lamp was studied by using the HPLC technique. The photosensitized degradation of both vitamins followed first-order kinetics, and the temperature effect on the observed photodegradation rate constant allowed the determination of the activation energy Ea as being 4 and 16 kcal/mol for vitamins A and D3, respectively. The addition of lycopene microencapsulated by spray-drying with a gum arabic-sucrose (8:2) mixture (MIC) produced a reduction of ca. 45% in the photosensitized degradation rate of both vitamins. Front-face fluorescence experiments showed the same photoprotection factor in the degradation of Rf itself, indicating that the photodegradation mechanism involved Rf-mediated reactive species, such as the excited triplet state of Rf, 3Rf*, and/or singlet molecular oxygen, 1O2. The interaction of both 3Rf* and 1O2 with MIC was evaluated in aqueous solutions by using laser-induced time-resolved absorption or emission spectroscopy, and the contribution of an inner-filter effect in the presence of MIC in skimmed milk was evaluated by diffuse reflectance spectroscopy. The main operating mechanism of photoprotection is due to the deactivation of 3Rf* by the proteic component of gum arabic; thus, gum arabic based microcapsules could be used to improve the photostability of milk during its storage and/or processing under light.