Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 45(115), p. 13360-13370, 2011

DOI: 10.1021/jp206770s

Links

Tools

Export citation

Search in Google Scholar

Forster Resonance Energy Transfer beyond 10 nm: Exploiting the Triplet State Kinetics of Organic Fluorophores

Journal article published in 2011 by Heike Hevekerl, Thiemo Spielmann, Andriy Chmyrov ORCID, Jerker Widengren
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inter- or intramolecular distances of biomolecules can be studied by Förster resonance energy transfer (FRET). For most FRET methods, the observable range of distances is limited to 1-10 nm, and the labeling efficiency has to be controlled carefully to obtain accurate distance determinations, especially for intensity-based methods. In this study, we exploit the triplet state of the acceptor fluorophore as a FRET readout using fluorescence correlation spectroscopy and transient state monitoring. The influence of donor fluorescence leaking into the acceptor channel is minimized by a novel suppression algorithm for spectral bleed-through, thereby tolerating a high excess (up to 100-fold) of donor-only labeled samples. The suppression algorithm and the high sensitivity of the triplet state to small changes in the fluorophore excitation rate make it possible to extend the observable range of FRET efficiencies by up to 50% in the presence of large donor-only populations. Given this increased range of FRET efficiencies, its compatibility with organic fluorophores, and the low requirements on the labeling efficiency and instrumentation, we foresee that this approach will be attractive for in vitro and in vivo FRET-based spectroscopy and imaging.