Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Biomedical Engineering, 6(50), p. 754-767, 2003

DOI: 10.1109/tbme.2003.812164

Links

Tools

Export citation

Search in Google Scholar

In vivo measurement of the brain and skull resistivites using an EIT-based method and realistic models for the head

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In vivo measurements of equivalent resistivities of skull (rho(skull)) and brain (rho(brain)) are performed for six subjects using an electric impedance tomography (EIT)-based method and realistic models for the head. The classical boundary element method (BEM) formulation for EIT is very time consuming. However, the application of the Sherman-Morrison formula reduces the computation time by a factor of 5. Using an optimal point distribution in the BEM model to optimize its accuracy, decreasing systematic errors of numerical origin, is important because cost functions are shallow. Results demonstrate that rho(skull)/rho(brain) is more likely to be within 20 and 50 rather than equal to the commonly accepted value of 80. The variation in rho(brain)(average = 301 omega x cm, SD = 13%) and rho(skull)(average = 12230 omega x cm, SD = 18%) is decreased by half, when compared with the results using the sphere model, showing that the correction for geometry errors is essential to obtain realistic estimations. However, a factor of 2.4 may still exist between values of rho(skull)/rho(brain) corresponding to different subjects. Earlier results show the necessity of calibrating rho(brain) and rho(skull) by measuring them in vivo for each subject, in order to decrease errors associated with the electroencephalogram inverse problem. We show that the proposed method is suited to this goal.