Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Robotics, 4(27), p. 757-768, 2011

DOI: 10.1109/tro.2011.2137770

Links

Tools

Export citation

Search in Google Scholar

Active Stabilization for Robotized Beating Heart Surgery.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, control strategies for an active stabilizer dedicated to beating heart coronary artery bypass grafting are investigated. The active stabilizer, which consists of a piezoactuated compliant mechanism, has to be controlled to compensate for the displacements induced by the beating heart in order to provide the surgeon with a locally motionless myocardium surface. Three controllers, including different levels of prior knowledge about the heart motion, are presented. Their performance with respect to modeling uncertainties, arising unknown interactions of the stabilizer with its positioning mechanism, and the heart, is studied through simulations, as well as laboratory and in vivo experiments. Finally, the selection of the most adequate control scheme and the performance of the device from a clinical point of view are discussed.