Published in

American Chemical Society, Journal of Medicinal Chemistry, 14(44), p. 2378-2381, 2001

DOI: 10.1021/jm010811t

Links

Tools

Export citation

Search in Google Scholar

Conformational Analysis of a Glycosylated Human Myelin Oligodendrocyte Glycoprotein Peptide Epitope Able To Detect Antibody Response in Multiple Sclerosis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Myelin oligodendrocyte glycoprotein (MOG), a minor myelin component, is an important central nervous system specific target autoantigen for primary demyelination in autoimmune diseases such as multiple sclerosis (MS). The native structure of MOG presents a glycosylation site at position 31 (Asn(31)). It has been recently described that glycosylation of a MOG peptide epitope improved the detection of specific autoantibodies in sera of MS patients. The solution conformational behavior of two MOG derived peptides-hMOG(30-50) (1) and the glycosylated analogue [Asn(31)(N-beta-Glc)]hMOG(30-50) (2)-were investigated through NMR analysis in a water/HFA solution. Conformational studies revealed that peptides 1 and 2 adopted similar conformations in this environment. In particular, they showed strong propensity to assume a well-defined amphipatic structure encompassing residues 41-48. The N-terminal region resulted to be almost completely unstructured for both peptides. The presence in 1 of a low populated Asx-turn conformation characteristic of the Asn-Xaa-Thr glycosylation sites was the only conformational difference between peptides 1 and 2. Thus, the specific antibody recognition of peptide 2 is most likely driven by direct interactions of the antibody binding site with the Asn-linked sugar moiety.