Published in

Elsevier, Cell, 3(135), p. 549-560, 2008

DOI: 10.1016/j.cell.2008.09.060

Links

Tools

Export citation

Search in Google Scholar

Neurofibromin regulation of ERK signaling modulates GABA release and learning

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We uncovered a new role for ERK signaling in GABA release, long-term potentiation (LTP) and learning, and show that disruption of this mechanism accounts for the learning deficits in a mouse model for Neurofibromatosis type I (NF1), a common genetic cause for learning disabilities. Genetic, pharmacological, electrophysiological and behavioral data demonstrate that neurofibromin modulates ERK/synapsin I dependent GABA release, which in turn modulate hippocampal LTP and learning. An Nf1 heterozygous null mutation, which results in enhanced ERK and synapsin I phosphorylation, increased pre-synaptic GABA release in the hippocampus which was reversed by pharmacologically down-regulating ERK signaling. Importantly, the learning deficits associated with the Nf1 mutation were rescued by a sub-threshold dose of a GABAA antagonist. Accordingly, Cre-deletions of the Nf1 gene showed that only those deletions involving inhibitory neurons caused hippocampal inhibition, LTP and learning abnormalities. Importantly, our results also revealed lasting increases in GABA release triggered by learning, indicating that the mechanisms uncovered here are of general importance for learning and memory.