Published in

American Chemical Society, Nano Letters, 2(12), p. 1038-1044, 2012

DOI: 10.1021/nl204273h

Links

Tools

Export citation

Search in Google Scholar

Slowing down DNA Translocation through a Nanopore in Lithium Chloride

Journal article published in 2012 by Stefan W. Kowalczyk, David B. Wells, Aleksei Aksimentiev ORCID, Cees Dekker
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The charge of a DNA molecule is a crucial parameter in many DNA detection and manipulation schemes such as gel electrophoresis and lab-on-a-chip applications. Here, we study the partial reduction of the DNA charge due to counterion binding by means of nanopore translocation experiments and all-atom molecular dynamics (MD) simulations. Surprisingly, we find that the translocation time of a DNA molecule through a solid-state nanopore strongly increases as the counterions decrease in size from K(+) to Na(+) to Li(+), both for double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA). MD simulations elucidate the microscopic origin of this effect: Li(+) and Na(+) bind DNA stronger than K(+). These fundamental insights into the counterion binding to DNA also provide a practical method for achieving at least 10-fold enhanced resolution in nanopore applications.