Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Medical Imaging, 11(22), p. 1458-1469, 2003

DOI: 10.1109/tmi.2003.819278

Links

Tools

Export citation

Search in Google Scholar

A registration-based approach to quantify flow-mediated dilation (FMD) of the brachial artery in ultrasound image sequences

Journal article published in 2003 by Alejandro F. Frangi, Martín Laclaustra, Pablo Lamata ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Flow-mediated dilation (FMD) offers a mechanism to characterize endothelial function and, therefore, may play a role in the diagnosis of cardiovascular diseases. Computerized analysis techniques are very desirable to give accuracy and objectivity to the measurements. Virtually all methods proposed up to now to measure FMD rely on accurate edge detection of the arterial wall, and they are not always robust in the presence of poor image quality or image artifacts. A novel method for automatic dilation assessment based on a global image analysis strategy is presented. We model interframe arterial dilation as a superposition of a rigid motion and a scaling factor perpendicular to the artery. Rigid motion can be interpreted as a global compensation for patient and probe movements, an aspect that has not been sufficiently studied before. The scaling factor explains arterial dilation. The ultrasound sequence is analyzed in two phases using image registration to recover both transformation models. Temporal continuity in the registration parameters along the sequence is enforced with a Kalman filter since the dilation process is known to be a gradual physiological phenomenon. Comparing automated and gold standard measurements (average of manual measurements) we found a negligible bias (0.05%FMD) and a small standard deviation (SD) of the differences (1.05%FMD). These values are comparable with those obtained from manual measurements (bias = 0.23%FMD, SD(intra-obs) = 1.13%FMD, SD(inter-obs) 1.20%FMD). The proposed method offers also better reproducibility (CV = 0.40%) than the manual measurements (CV = 1.04%).