Published in

Elsevier, Biophysical Chemistry, (167), p. 1-7

DOI: 10.1016/j.bpc.2012.03.010

Links

Tools

Export citation

Search in Google Scholar

Conformational dynamics of human IAPP monomers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We study the conformational dynamics of the human Islet Amyloid Polypeptide (hIAPP) molecule - a 37 residue-long peptide associated to type 2 diabetes - using molecular dynamics (MD) simulations. We identify partially structured conformational states of the hIAPP monomer, categorized by both end-to-end distance and secondary structure, as suggested by previous experimental and computational studies. The MD trajectories of hIAPP are analyzed using data-driven methods, in particular principal component analysis, in order to identify preferred conformational states of the amylin monomer and to discuss their relative stability as compared to corresponding states in the amylin dimer. These potential hIAPP conformational states could be further tested and described experimentally, or in conjunction with modern computational analysis tools such as Markov state-based methods for extracting kinetics and thermodynamics from atomistic MD trajectories.