Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Journal of Neuroinflammation, 1(10), 2013

DOI: 10.1186/1742-2094-10-89

Links

Tools

Export citation

Search in Google Scholar

Reduction of microglial activity in a model of multiple sclerosis by dipyridamole

Journal article published in 2013 by Scott Sloka, Luanne M. Metz, Walter Hader, Yves Starreveld, V. Wee Yong ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Despite extensive and persistent activation of microglia in multiple sclerosis (MS), microglia inhibitors have not yet been identified for treatment of the disorder. We sought to identify medications already in clinical use that could inhibit the activation of microglia. On the basis of the reported inhibitory effects of dipyridamole on phosphodiesterase activity that result in the production of various anti-inflammatory outcomes, we selected it for study. Dipyridamole is used clinically for secondary prevention in stroke. In this study, dipyridamole was examined using microglia in culture and in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Results We found that dipyridamole attenuated the elevation of several cytokines and chemokines in human microglia caused by Toll-like receptor stimulation. Morphological characteristics of activated microglia in culture were also normalized by dipyridamole. In mice, dipyridamole decreased the clinical severity of EAE and reduced microglial activity and other histological indices of EAE in the spinal cord. Conclusions Dipyridamole is an inhibitor of microglia activation and may have a role in MS and other neurological conditions to attenuate microglial activity.