Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Biological Chemistry, 33(281), p. 23349-23356, 2006

DOI: 10.1074/jbc.m513720200

Links

Tools

Export citation

Search in Google Scholar

Characterization of the Stomatin Domain Involved in Homo-oligomerization and Lipid Raft Association

Journal article published in 2006 by Ellen Umlauf, Mario Mairhofer ORCID, Rainer Prohaska
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The cytoplasmically oriented monotopic integral membrane protein stomatin forms high-order oligomers and associates with lipid rafts. To characterize the domains that are involved in oligomerization and detergent-resistant membrane (DRM) association, we expressed truncation and point mutants of stomatin and analyzed their size and buoyancy by ultracentrifugation methods. A small C-terminal region of stomatin that is largely hydrophobic, Ser-Thr-Ile-Val-Phe-Pro-Leu-Pro-Ile (residues 264-272), proved to be crucial for oligomerization, whereas the N-terminal domain (residues 1-20) and the last 12 C-terminal amino acids (residues 276-287) were not essential. The introduction of alanine substitutions in the region 264-272 resulted in the appearance of monomers. Remarkably, only three of these residues, Ile-Val-Phe (residues 266-268), were found to be indispensable for the DRM association. Interestingly, the exchange of Pro-269 and to some extent the residues 270-272, which are essential for oligomerization, did not affect the DRM association of stomatin. This suggests that the formation of oligomers is not necessary for the association of stomatin with DRMs. Internal deletions near the membrane anchoring domain resulted in the formation of intermediate size oligomers suggesting a conformational interdependence of large parts of the C-terminal region. Fluorescence recovery after photobleaching analysis of the tagged, monomeric, non-DRM mutant ST-(1-262)-green fluorescent protein and wild type stomatin StomGFP showed a significantly higher lateral mobility of the truncation mutant in the plasma membrane suggesting a membrane interaction of the respective C-terminal region also in vivo.