Published in

Springer Verlag, Ecotoxicology, 4(21), p. 1072-1083

DOI: 10.1007/s10646-012-0860-0

Links

Tools

Export citation

Search in Google Scholar

Survival data analyses in ecotoxicology: Critical effect concentrations, methods and models. What should we use?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In ecotoxicology, critical effect concentrations are the most common indicators to quantitatively assess risks for species exposed to contaminants. Three types of critical effect concentrations are classically used: lowest/ no observed effect concentration (LOEC/NOEC), LC( x) (x% lethal concentration) and NEC (no effect concentration). In this article, for each of these three types of critical effect concentration, we compared methods or models used for their estimation and proposed one as the most appropriate. We then compared these critical effect concentrations to each other. For that, we used nine survival data sets corresponding to D. magna exposition to nine different contaminants, for which the time-course of the response was monitored. Our results showed that: (i) LOEC/NOEC values at day 21 were method-dependent, and that the Cochran-Armitage test with a step-down procedure appeared to be the most protective for the environment; (ii) all tested concentration-response models we compared gave close values of LC50 at day 21, nevertheless the Weibull model had the lowest global mean deviance; (iii) a simple threshold NEC-model both concentration and time dependent more completely described whole data (i.e. all timepoints) and enabled a precise estimation of the NEC. We then compared the three critical effect concentrations and argued that the use of the NEC might be a good option for environmental risk assessment.