Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Wildlife Management, 7(74), p. 1463-1471, 2010

DOI: 10.1111/j.1937-2817.2010.tb01273.x

Wiley, Journal of Wildlife Management, 7(74), p. 1463-1471

DOI: 10.2193/2009-320

Links

Tools

Export citation

Search in Google Scholar

Survival and Breeding Transitions for a Reintroduced Bison Population: a Multistate Approach

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The iconic plains bison (Bison bison) have been reintroduced to many places in their former range, but there are few scientific data evaluating the success of these reintroductions or guiding the continued management of these populations. Relying on mark-recapture data, we used a multistate model to estimate bison survival and breeding transition probabilities while controlling for the recapture process. We tested hypotheses in these demographic parameters associated with age, sex, reproductive state, and environmental variables. We also estimated biological process variation in survival and breeding transition probabilities by factoring out sampling variation. The recapture rate of females and calves was high (0.78 ± 0.15 [SE]) and much lower for males (0.41 ± 0.23), especially older males (0.17 ± 0.15). We found that overall bison survival was high (>0.8) and that males (0.80 ± 0.13) survived at lower rates than females (0.94 ± 0.04), but as females aged survival declined (0.89 ± 0.05 for F ≥15 yr old). Lactating and non-lactating females survived at similar rates. We found that females can conceive early (approx. 1.5 yr of age) and had a high probability (approx. 0.8) of breeding in consecutive years, until age 13.5 years, when females that were non-lactating tended to stay in that state. Our results suggest senescence in reproduction and survival for females. We found little support for the effect of climatic covariates on demographic rates, perhaps because the park's current population management goals were predicated from drought-year conditions. This reintroduction has been successful, but continued culling actions will need to be employed and an adaptive management approach is warranted. Our demographic approach can be applied to other heavily managed large-ungulate systems with few or no natural predators.