Published in

Elsevier, Journal of Investigative Dermatology, 6(110), p. 894-901, 1998

DOI: 10.1046/j.1523-1747.1998.00205.x

Links

Tools

Export citation

Search in Google Scholar

Characterization of the Cutaneous Exanthem in Macaques Infected with a Nef Gene Variant of SIVmac239

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The molecularly cloned viruses known as SIVmac239/R17Y and SIVmac239/YEnef cause extensive lymphocyte activation and induce an acute disease syndrome in macaque monkeys. One manifestation of this syndrome is a severe diffuse cutaneous maculopapular exanthem that is similar to the exanthem associated with HIV-1 infection. To examine the pathogenesis of this exanthem, biopsies obtained throughout the course of clinically evident rash were examined for the presence of virus by in situ hybridization and immunohistochemistry, and the cellular infiltrate was characterized with respect to cellular immunophenotype and chemokine receptor expression. The onset of rash was associated with abundant simian immunodeficiency virus nucleic acid and protein within perivascular dermal infiltrates and occasionally within intraepithelial cells. Analysis of cellular infiltrates showed that biopsies, obtained on the day of rash onset, were composed of equal numbers of CD4+ and CD8+ lymphocytes and abundant alphaEbeta7 positive cells surrounding vessels with upregulated endothelial E-selectin. Moreover, by examining virus expression in sequential skin biopsies from the same animal, the clearance of virus and the resolution of rash were associated with an increase in the percentage of cells expressing CD8, the chemokine receptor CXCR3, and GMP-17, a marker of cytotoxic granules. These results suggest that activated cytotoxic T cells are trafficking to sites of inflammation in the skin and directly or indirectly affect levels of viral replication at these sites.