Published in

American Astronomical Society, Astrophysical Journal, 2(691), p. 1707-1711, 2009

DOI: 10.1088/0004-637x/691/2/1707

Links

Tools

Export citation

Search in Google Scholar

On the Origin of TeV Gamma-ray Emission from HESS J1834-087

Journal article published in 2008 by R. Mukherjee, E. V. Gotthelf ORCID, J. P. Halpern
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present an X-ray study of the field containing the extended TeV source HESS J1834-087 using data obtained with the XMM-Newton telescope. Previously, the coincidence of this source with both the shell-type supernova remnant (SNR) W41 and a giant molecular cloud (GMC) was interpreted as favoring pi^0-decay gamma-rays from interaction of the old SNR with the GMC. Alternatively, the TeV emission has been attributed to inverse Compton scattering from leptons deposited by PSR J1833-0827, a pulsar assumed to have been born in W41 but now located 24' from the center of the SNR (and the TeV source). Instead, we argue for a third possibility, that the TeV emission is powered by a previously unknown pulsar wind nebula located near the center of W41. The candidate pulsar is XMMU J183435.3-084443, a hard X-ray point source that lacks an optical counterpart to R>21 and is coincident with diffuse X-ray emission. The X-rays from both the point source and diffuse feature are evidently non-thermal and highly absorbed. A best fit power-law model yields photon index Gamma ~ 0.2 and Gamma ~ 1.9, for the point source and diffuse emission, respectively, and 2-10 keV flux ~ 5 X 10^(-13) ergs/cm^(2)/s for each. At the measured 4 kpc distance of W41, the observed X-ray luminosity implies an energetic pulsar with Edot ~ 10^(36)d_4^2 ergs/s, which is also sufficient to generate the observed gamma-ray luminosity of 2.7 X 10^(34)d_4^2 ergs/s via inverse Compton scattering. ; Comment: Accepted for publication in The Astrophysical Journal