Published in

Springer, European Child and Adolescent Psychiatry, 2(25), p. 211-212, 2015

DOI: 10.1007/s00787-015-0750-0

Springer (part of Springer Nature), European Child and Adolescent Psychiatry, 2(24), p. 209-217

DOI: 10.1007/s00787-014-0567-2

Links

Tools

Export citation

Search in Google Scholar

Differential susceptibility to maternal expressed emotion in children with ADHD and their siblings? Investigating plasticity genes, prosocial and antisocial behaviour

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The differential susceptibility theory states that children differ in their susceptibility towards environmental experiences, partially due to plasticity genes. Individuals carrying specific variants in such genes will be more disadvantaged in negative but, conversely, more advantaged in positive environments. Understanding gene-environment interactions may help unravel the causal mechanisms involved in multifactorial psychiatric disorders such as Attention-Deficit/Hyperactivity Disorder (ADHD). The differential susceptibility theory was examined by investigating the presence of interaction effects between maternal expressed emotion (EE; warmth and criticism) and the solitary and combined effects of plasticity genes (DAT1, DRD4, 5-HTT) on prosocial and antisocial behaviour (measured with parent- and self-reports) in children with ADHD and their siblings (N = 366, M = 17.11 years, 74.9 % male). Maternal warmth was positively associated with prosocial behaviour and negatively with antisocial behaviour, while maternal criticism was positively associated with antisocial behaviour and negatively with prosocial behaviour. No evidence of differential susceptibility was found. The current study found no evidence for differential susceptibility based on the selected plasticity genes, in spite of strong EE-behaviour associations. It is likely that additional factors play a role in the complex relationship between genes, environment and behaviour.