Published in

Elsevier, Fluid Phase Equilibria, (409), p. 458-465, 2016

DOI: 10.1016/j.fluid.2015.10.044

Links

Tools

Export citation

Search in Google Scholar

Surface Tensions of Ionic Liquids: Non-Regular Trend Along the Number of Cyano Groups

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ionic liquids (ILs) with cyano-functionalized anions are a set of fluids that are still poorly characterized despite their remarkably low viscosities and potential applications. Aiming at providing a comprehensive study on the influence of the number of -CN groups through the surface tension and surface organization of ILs, the surface tensions of imidazolium-based ILs with cyano-functionalized anions were determined at atmospheric pressure and in the (298.15-343.15) K temperature range. The ILs investigated are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN]-, [N(CN)2]-, [C(CN)3]- and [B(CN)4]- anions. Although the well-known trend regarding the surface tension decrease with the increase of the size of the aliphatic moiety at the cation was observed, the order obtained for the anions is more intricate. For a common cation and at a given temperature, the surface tension decreases according to: [N(CN)2]- > [SCN]- > [C(CN)3]- > [B(CN)4]-. Therefore, the surface tension of this homologous series does not decrease with the increase of the number of -CN groups at the anion as has been previously shown by studies performed with a more limited matrix of ILs. A maximum in the surface tension and critical temperature was observed for [N(CN)2]-based ILs. Furthermore, a minimum in the surface entropy, indicative of a highly structured surface, was found for the same class of ILs. All these evidences seem to be a result of stronger hydrogen-bonding interactions occurring in [N(CN)2]-based ILs, when compared with the remaining CN-based counterparts, and as sustained by cation-anion interaction energies derived from the Conductor Like Screening Model for Real Solvents (COSMO-RS).