Published in

Elsevier, Bioorganic and Medicinal Chemistry, 12(10), p. 3731-3739

DOI: 10.1016/s0968-0896(02)00372-3

Links

Tools

Export citation

Search in Google Scholar

Design, Synthesis, Conformational Analysis, and Biological Studies of Urotensin-II Lactam Analogues

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human urotensin II (hU-II; H-Glu-Thr-Pro-Asp-cyclo[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) is a disulfide bridged undecapeptide recently identified as the ligand of an orphan G protein-coupled receptor. hU-II has been described as the most potent vasoconstrictor compound identified to date. With the aim of replacing the disulfide bridge by a chemically more stable moiety, we have synthesized and tested a series of lactam analogues of hU-II minimum active fragment, that is hU-II(4-11). The contractile activity of the synthetic analogues on the rat isolated thoracic aorta was found to be dependent upon the dimension of the lactam bridge. The most active peptide, H-Asp-cyclo[Orn-Phe-Trp-Lys-Tyr-Asp]-Val-OH (3), is approximately 2 logs less potent than hU-II (pD(2)=6.3 vs 8.4). A conformational analysis in solution of the active peptide 3, one of the inactive analogues, and hU-II was performed, using NMR and molecular modelling techniques. A superposition of the calculated structures of hU-II and 3 clearly shows that three out of four key residues (i.e., Phe(6), Lys(8) and Tyr(9)) maintain the same side- chain orientation, while the fourth one, Trp(7), cannot be superimposed. This observation could explain the reduced biological activity of the synthetic analogue.