Published in

Springer Nature [academic journals on nature.com], Oncogene, 21(30), p. 2420-2432, 2011

DOI: 10.1038/onc.2010.615

Links

Tools

Export citation

Search in Google Scholar

P70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells

Journal article published in 2011 by C. K. M. Ip, A. N. Y. Cheung, H. Y. S. Ngan, A. S. T. Wong
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ovarian cancer is highly metastatic with a poor prognosis. The serine/threonine kinase, p70 S6 kinase (p70(S6K)), which is a downstream effector of phosphatidylinositol 3-kinase/Akt pathway, is frequently activated in ovarian cancer. Here, we show that p70(S6K) is a critical regulator of the actin cytoskeleton in the acquisition of the metastatic phenotype. This regulation is through two important activities: p70(S6K) acts as an actin filament cross-linking protein and as a Rho family GTPase-activating protein. Ectopic expression of constitutively active p70(S6K) in ovarian cancer cells induced a marked reorganization of the actin cytoskeleton and promoted directional cell migration. Using cosedimentation and differential sedimentation assays, p70(S6K) was found to directly bind to and cross-link actin filaments. Immunofluorescence studies showed p70(S6K) colocalized with cytochalasin D-sensitive actin at the leading edge of motile cells. The p70(S6K) did not affect the kinetics of spontaneous actin polymerization, but could stabilize actin filaments by the inhibition of cofilin-induced actin depolymerization. In addition, we showed that p70(S6K) stimulated the rapid activation of both Rac1 and Cdc42, and their downstream effector p21-activated kinase (PAK1), but not RhoA. Depletion of p70(S6K) expression or inhibition of its activity resulted in significant inhibition of actin cytoskeleton reorganization and reduced migration, with a concomitant reduction in Rac1, Cdc42 and PAK1 activation, confirming that the effect was p70(S6K) specific. Similarly, the actin cytoskeleton reorganization/migratory phenotype could be reversed by expression of dominant negative Rac1 and Cdc42, or inhibition of PAK1. These results reveal a new direction for understanding the oncogenic roles of p70(S6K) in tumor progression.