Published in

Nature Research, Nature Structural and Molecular Biology, 6(19), p. 642-649, 2012

DOI: 10.1038/nsmb.2307

Links

Tools

Export citation

Search in Google Scholar

A locally closed conformation of a bacterial pentameric proton-gated ion channel.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pentameric ligand-gated ion channels mediate signal transduction through conformational transitions between closed-pore and open-pore states. To stabilize a closed conformation of GLIC, a bacterial proton-gated homolog from Gloeobacter violaceus whose open structure is known, we separately generated either four cross-links or two single mutations. We found all six mutants to be in the same 'locally closed' conformation using X-ray crystallography, sharing most of the features of the open form but showing a locally closed pore as a result of a concerted bending of all of its M2 helices. The mutants adopt several variant conformations of the M2-M3 loop, and in all cases an interacting lipid that is observed in the open form disappears. A single cross-linked mutant is functional, according to electrophysiology, and the locally closed structure of this mutant indicates that it has an increased flexibility. Further cross-linking, accessibility and molecular dynamics data suggest that the locally closed form is a functionally relevant conformation that occurs during allosteric gating transitions.