Published in

Elsevier, Free Radical Biology and Medicine, 6(47), p. 794-802, 2009

DOI: 10.1016/j.freeradbiomed.2009.06.018

Links

Tools

Export citation

Search in Google Scholar

Signaling events leading to peroxiredoxin 5 up-regulation in immunostimulated macrophages.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Peroxiredoxins (PRXs) are thiol peroxidases associated with many cellular functions including proliferation, cell cycle, apoptosis, and differentiation. There is also increasing evidence that these ubiquitous antioxidant enzymes control H(2)O(2) signaling in eukaryotes. Here, we provide evidence that the LPS/TLR4 and the Th1 cytokine IFN-gamma pathways induce expression of PRX5, a potent peroxide and peroxynitrite reductase, in primary macrophages. Furthermore, deletion of TRIF, MyD88, or type I IFN receptor revealed that the LPS/TLR4-dependent increase in PRX5 expression is mediated by a TRIF-dependent/IFN-beta-independent pathway. IFN-gamma-dependent induction of the PRX5 gene was markedly reduced in MyD88(-/-) and TNF(-/-) macrophages. Moreover, addition of exogenous TNF allowed the recovery of full PRX5 expression in both MyD88(-/-) and TNF(-/-) cells stimulated with IFN-gamma, suggesting that basal TNF produced in an MyD88-dependent manner contributes to PRX5 induction. Downstream of the TLR pathways, we have explored the role of MAPK activation and found that p38 and JNK mainly contribute to PRX5 up-regulation in immunostimulated macrophages. Expression of PRX5 is thus responsive to innate immunity signals, and we propose that PRX5 is an additional host defense weapon of activated macrophages.