Published in

American Institute of Physics, Journal of Applied Physics, 3(104), p. 033909

DOI: 10.1063/1.2960572

Links

Tools

Export citation

Search in Google Scholar

Magnetic properties of Fe-Co catalysts used for carbon nanofiber synthesis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The magnetic properties of Fe-Co alloys used as catalysts for vertically aligned carbon nanofiber growth are presented at several stages in the formation process: from thin films to dewetted islands to carbon-encapsulated particles. Electron microscopy shows their morphological properties as a function of the alloy ratio. The magnetic properties are investigated by superconducting quantum interference device magnetometry in a field range of vertical bar H vertical bar <= 20 kOe and temperatures between 2 and 330 K. Magnetization measurements illustrate a composition dependence of the magnetic properties. In addition, there is a significant amount of metal that is not incorporated in the resultant catalyst particles. This metal is superparamagnetic (SPM) and features of the magnetization curve shed light on the magnetic moment distribution of these SPM clusters. (c) 2008 American Institute of Physics.