Published in

Elsevier, Biomaterials, 13(33), p. 3604-3613

DOI: 10.1016/j.biomaterials.2012.01.052

Links

Tools

Export citation

Search in Google Scholar

Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polyethylenimine (PEI) functionalized carbon dots (CD-PEI) were fabricated by one-step microwave assisted pyrolysis of glycerol and branched PEI25k mixture where the formation of carbon nanoparticles and the surface passivation were accomplished simultaneously. In this hybrid C-dot, PEI molecule played two key roles in the system - as a nitrogen-rich compound to passivate surface to enhance the fluorescence and as a polyelectrolyte to condense DNA. This CD-PEI was shown to be water soluble and emit stable bright multicolor fluorescence relying on excitation wavelength. The DNA condensation capability and cytotoxicity of CD-PEI could be regulated by pyrolysis time possibly due to the somewhat destruction of PEI during the formation of carbon dots. CD-PEI obtained at an appropriate pyrolysis time exhibited lower toxicity, higher or comparable gene expression of plasmid DNA in COS-7 cells and HepG2 cells relative to control PEI25k. Intriguingly, the CD-PEIs internalized into cells displayed tunable fluorescent emission under varying excitation wavelength, suggesting the potential application of CD-PEI in gene delivery and bioimaging.