Dissemin is shutting down on January 1st, 2025

Published in

Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

DOI: 10.1117/12.927229

Links

Tools

Export citation

Search in Google Scholar

METIS: a novel coronagraph design for the Solar Orbiter mission

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

METIS (Multi Element Telescope for Imaging and Spectroscopy) METIS, the “Multi Element Telescope for Imaging and Spectroscopy”, is a coronagraph selected by the European Space Agency to be part of the payload of the Solar Orbiter mission to be launched in 2017. The mission profile will bring the Solar Orbiter spacecraft as close to the Sun as 0.3 A.U., and up to 35 out-of-ecliptic providing a unique platform for helio-synchronous observations of the Sun and its polar regions. METIS coronagraph is designed for multi-wavelength imaging and spectroscopy of the solar corona. This presentation gives an overview of the innovative design elements of the METIS coronagraph. These elements include: i) multi-wavelength, reflecting Gregorian-telescope; ii) multilayer coating optimized for the extreme UV (30.4 nm, HeII Lyman-) with a reflecting cap-layer for the UV (121.6 nm, HI Lyman-) and visible-light (590-650); iii) inverse external-occulter scheme for reduced thermal load at spacecraft peri-helion; iv) EUV/UV spectrograph using the telescope primary mirror to feed a 1st and 4th-order spherical varied line-spaced (SVLS) grating placed on a section of the secondary mirror; v) liquid crystals electro-optic polarimeter for observations of the visible-light K-corona. The expected performances are also presented.