Published in

Wiley, Groundwater, 1(43), p. 19-29, 2005

DOI: 10.1111/j.1745-6584.2005.tb02282.x

Links

Tools

Export citation

Search in Google Scholar

Direct-Push Hydrostratigraphic Profiling: Coupling Electrical Logging and Slug Tests

Journal article published in 2005 by Stephen M. Sellwood, John M. Healey, Steffen Birk ORCID, James J. Butler
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Spatial variations in hydraulic conductivity (K) can significantly affect the transport of contaminants in ground water. Conventional field methods, however, rarely provide a description of these variations at the level of detail necessary for reliable transport predictions and effective remediation designs. A direct-push (DP) method, hydrostratigraphic profiling, has been developed to characterize the spatial variability of both electrical conductivity (EC) and hydraulic conductivity in unconsolidated formations in a cost-effective manner. This method couples a dual-rod approach for performing slug tests in DP equipment with high-resolution EC logging. The method was evaluated at an extensively studied site in the Kansas River floodplain. A series of profiles was performed on a surface grid, resulting in a detailed depiction of the three-dimensional distribution of EC and K. Good agreement was found between K estimates obtained from this approach and those obtained using other methods. The results of the field evaluation indicate that DP hydrostratigraphic profiling is a promising method for obtaining detailed information about spatial variations in subsurface properties without the need for permanent wells.