Published in

Elsevier, Developmental Biology, 1(375), p. 54-64, 2013

DOI: 10.1016/j.ydbio.2012.12.008

Links

Tools

Export citation

Search in Google Scholar

Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse

Journal article published in 2012 by Kathy K. Niakan, Kevin Eggan
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mammalian embryogenesis is controlled by mechanisms governing the balance between pluripotency and differentiation. The expression of early lineage-specific genes can vary significantly between species, with implications for developmental control and stem cell derivation. However, the mechanisms involved in patterning the human embryo are still unclear. We analyzed the appearance and localization of lineage-specific transcription factors in staged preimplantation human embryos from the zygote until the blastocyst. We observed that the pluripotency-associated transcription factor OCT4 was initiated in 8-cell embryos at 3 days post fertilization (dpf) and is restricted to the inner cell mass (ICM) in 128-256 cell blastocysts (6dpf), approximately 2 days later than the mouse. The trophectoderm (TE)-associated transcription factor CDX2 was detectable in 5dpf blastocysts and initially coincident with OCT4, indicating a lag in CDX2 initiation and OCT4 repression in the TE lineage, relative to the mouse. Once established, the TE expressed intracellular and cell-surface proteins cytokeratin 7 and fibroblast growth factor receptor 1, which are thought to be specific to post-implantation human trophoblast progenitor cells. The primitive endoderm (PE)-associated transcription factor SOX17 was initially heterogeneously expressed in the ICM where it co-localized with a sub-set of OCT4 expressing cells at 4-5dpf. SOX17 was progressively restricted to the PE adjacent to the blastocoel cavity together with the transcription factor GATA6 by 6dpf. We observed low levels of Laminin expression in the human PE, though this basement membrane component is thought to play an important role in mouse PE cell sorting, suggesting divergence in differentiation mechanisms between species. Additionally, while stem cell lines representing the three distinct cell types that comprise a mouse blastocyst have been established, the identity of cell types that emerge during early human embryonic stem cell derivation is unclear. We observed that derivation from plating intact human blastocysts results predominantly in the outgrowth of TE-like cells, which impairs human embryonic stem cell derivation. Altogether, our findings provide important insight into developmental patterning of preimplantation human embryos with potential consequences for stem cell derivation.