Published in

Wiley, New Phytologist, 1(188), p. 52-66, 2010

DOI: 10.1111/j.1469-8137.2010.03371.x

Links

Tools

Export citation

Search in Google Scholar

Transcription factor families inferred from genome sequences of photosynthetic stramenopiles

Journal article published in 2010 by Edda Rayko, Florian Maumus, Uma Maheswari ORCID, Kamel Jabbari, Chris Bowler
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

• By comparative analyses we identify lineage-specific diversity in transcription factors (TFs) from stramenopile (or heterokont) genome sequences. We compared a pennate (Phaeodactylum tricornutum) and a centric diatom (Thalassiosira pseudonana) with those of other stramenopiles (oomycetes, Pelagophyceae, and Phaeophyceae (Ectocarpus siliculosus)) as well as to that of Emiliania huxleyi, a haptophyte that is evolutionarily related to the stramenopiles. • We provide a detailed description of diatom TF complements and report numerous peculiarities: in both diatoms, the heat shock factor (HSF) family is overamplified and constitutes the most abundant class of TFs; Myb and C2H2-type zinc finger TFs are the two most abundant TF families encoded in all the other stramenopile genomes investigated; the presence of diatom and lineage-specific gene fusions, in particular a class of putative photoreceptors with light-sensitive Per-Arnt-Sim (PAS) and DNA-binding (basic-leucine zipper, bZIP) domains and an HSF-AP2 domain fusion. • Expression data analysis shows that many of the TFs studied are transcribed and may be involved in specific responses to environmental stimuli. • Evolutionary and functional relevance of these observations are discussed.