Published in

American Institute of Physics, The Journal of Chemical Physics, 2(130), p. 024301

DOI: 10.1063/1.3054709

Links

Tools

Export citation

Search in Google Scholar

A theoretical study of linear beryllium chains: Full configuration interaction

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We present a full configuration interaction study of Be(N) (N=2,3,4,5) linear chains. A comparative study of the basis-set effect on the reproduction of the energy profile has been reported. In particular, the 3s1p, 4s2p, 4s2p1d, 5s3p2d, and 5s3p2d1f bases were selected. For the smallest chains (i.e., Be(2) and Be(3)), smaller basis sets give dissociative energy profiles, so large basis set is demanded for the reproduction of equilibrium minima in the structures. For Be(4) and Be(5) linear chains, the energy profiles show a minimum also by using the smallest basis sets, but the largest ones give a much stronger stabilization energy. For all the structures, two spin states have been studied: the singlet and the triplet. It is shown that the energy separation of the two states, in the equilibrium region, is small and decays exponentially with respect to the number of atoms in the chain. Finally an interpolative technique allowing for the estimation of the long-chain parameters from shorter ones is presented.