Published in

American Geophysical Union, Journal of Geophysical Research, D6(112), 2007

DOI: 10.1029/2005jd006977

Links

Tools

Export citation

Search in Google Scholar

Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

oating of mineral dust particles by air pollutants leads to core-mantle particles. These composite aerosols could interact differently with atmospheric radiation than the uncoated dust. In our simplified radiative calculations we assumed that a spherical dust core is covered uniformly by a liquid refractive material, such as sulfate or nitrate. Theoretical calculations of optical properties of such particles show that the single-scattering albedo and the asymmetry parameter of core-mantle aerosols only differ significantly from uncoated dust if coating layers exceed 20% of the radius of the dust core. Global simulations of sulfate/nitrate-coated dust particles show that the thickness of the shell can be expected to range from 0 to 20% of the radius of the dust core. The result of this work is that mineral dust particles can be treated as external mixture within radiative calculations but the coating processes lead to changed loads in sulfate, nitrate, and mineral dust aerosol loads and therefore change their impact on Earth radiation. The combined anthropogenic forcing of dust, nitrate, and sulfate aerosols is -0.1 W/m2; however, excluding heterogeneous interactions leads to a 3 times larger negative forcing.