Published in

American Geophysical Union, Geophysical Research Letters, 15(41), p. 5620-5628, 2014

DOI: 10.1002/2014gl061146

Links

Tools

Export citation

Search in Google Scholar

Do seasonal-to-decadal climate predictions underestimate the predictability of the real world?: Seasonal to decadal predictability

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Seasonal to decadal predictions are inevitably uncertain, depending on the size of the predictable signal relative to unpredictable chaos. Uncertainties can be accounted for using ensemble techniques, permitting quantitative probabilistic forecasts. In a perfect system, each ensemble member would represent a potential realization of the true evolution of the climate system, and the predictable components in models and reality would be equal. However, we show that the predictable component is sometimes lower in models than observations, especially for seasonal forecasts of the North Atlantic Oscillation and multi-year forecasts of North Atlantic temperature and pressure. In these cases the forecasts are under-confident, with each ensemble member containing too much noise. Consequently, most deterministic and probabilistic measures under-estimate potential skill and idealized model experiments under-estimate predictability. However, skilful and reliable predictions may be achieved using a large ensemble to reduce noise and adjusting the forecast variance through a post-processing technique proposed here.