Published in

Optica, Optics Letters, 24(35), p. 4166

DOI: 10.1364/ol.35.004166



Export citation

Search in Google Scholar

Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: Application to the optical trapping of dielectric particles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


In trying to manipulate the intensity distribution of a focused field, one typically uses amplitude or phase masks. Here we explore an approach, namely, varying the state of spatial coherence of the incident field. We experimentally demonstrate that the focusing of a Bessel-correlated beam produces an intensity minimum at the geometric focus rather than a maximum. By varying the spatial coherence width of the field, which can be achieved by merely changing the size of an iris, it is possible to change this minimum into a maximum in a continuous manner. This method can be used, for example, in novel optical trapping schemes, to selectively manipulate particles with either a low or high index of refraction.