Published in

Elsevier, Kidney International, 11(72), p. 1310-1315, 2007

DOI: 10.1038/sj.ki.5002500

Links

Tools

Export citation

Search in Google Scholar

Role of SNAREs and H+-ATPase in the targeting of proton pump-coated vesicles to collecting duct cell apical membrane

Journal article published in 2007 by J. H. Schwartz, G. Li, Q. Yang ORCID, V. Suri, J. J. Ross, E. A. Alexander
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recycling of H(+)-ATPase to the apical plasma membrane, mediated by vesicular exocytosis and endocytosis, is an important mechanism for controlling H(+) secretion by the collecting duct. We hypothesized that SNAREs (soluble N-ethylmaleimide-sensitive factor attachment proteins) may be involved in the targeting of H(+)-ATPase-coated vesicles. Using a tissue culture model of collecting duct H(+) secretory cells (inner medullary collecting duct (IMCD) cells), we demonstrated that they express the proteins required for SNARE-mediated exocytosis and form SNARE-fusion complexes upon stimulation of H(+)-ATPase exocytosis. Furthermore, exocytic amplification of apical H(+)-ATPase is sensitive to clostridial toxins that cleave SNAREs and thereby inhibit secretion. Thus, SNAREs are critical for H(+)-ATPase cycling to the plasma membrane. The process in IMCD cells has a feature distinct from that of neuronal cells: the SNARE complex includes and requires the vesicular cargo (H(+)-ATPase) for targeting. Using chimeras and truncations of syntaxin 1, we demonstrated that there is a specific cassette within the syntaxin 1 H3 domain that mediates binding of the SNAREs and a second distinct H3 region that binds H(+)-ATPase. Utilizing point mutations of the B1 subunit of the H(+)-ATPase, we document that this subunit contains specific targeting information for the H(+)-ATPase itself. In addition, we found that Munc-18-2, a regulator of exocytosis, plays a multifunctional role in this system: it regulates SNARE complex formation and the affinity of syntaxin 1 for H(+)-ATPase.