Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Langmuir, 7(25), p. 4219-4229, 2009

DOI: 10.1021/la8033275

Links

Tools

Export citation

Search in Google Scholar

A New Lipid Anchor for Sparsely Tethered Bilayer Lipid Membranes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mixed self-assembled monolayers (SAMs) of beta-mercaptoethanol and the new synthetic lipid 1,2-dipalmityl-3-[w-mercaptonona(ethylene oxide)] glycerol (FC 16) were investigated for their ability to form sparsely tethered bilayer lipid membranes (stBLMs) completed with various phospholipids. We investigated the structural and functional properties of FC16-based stBLMs and compared these to stBLMs prepared using a previously characterized synthetic lipid, 1,2-dimyristyl-3-[omega-mercaptohexa(ethylene oxide)] glycerol (WC14). FC16-based stBLMs show increased resistivity to ion transfer and an increase in the submembrane space of approximately 0.5 nm. Importantly, FC16-based stBLMs formed well-defined, complete bilayers with charged phospholipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG). In these, POPG incorporates into the outer monolayer leaflet in the same ratio as in the immersion solution but is excluded from the inner leaflet. In all cases that we have investigated thus far, the area densities of the lipids within the bilayers were on average close to those in free bilayer membranes. For charged phospholipids, FC16 appears to provide a distinct advantage over WC14 for the formation of well-defined stBLMs.