Published in

American Association for Cancer Research, Cancer Research, 16(74), p. 4470-4481, 2014

DOI: 10.1158/0008-5472.can-14-0218

Links

Tools

Export citation

Search in Google Scholar

Targeting EphA3 Inhibits Cancer Growth by Disrupting the Tumor Stromal Microenvironment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Eph receptor tyrosine kinases are critical for cell–cell communication during normal and oncogenic tissue patterning and tumor growth. Somatic mutation profiles of several cancer genomes suggest EphA3 as a tumor suppressor, but its oncogenic expression pattern and role in tumorigenesis remain largely undefined. Here, we report unexpected EphA3 overexpression within the microenvironment of a range of human cancers and mouse tumor xenografts where its activation inhibits tumor growth. EphA3 is found on mouse bone marrow–derived cells with mesenchymal and myeloid phenotypes, and activation of EphA3+/CD90+/Sca1+ mesenchymal/stromal cells with an EphA3 agonist leads to cell contraction, cell–cell segregation, and apoptosis. Treatment of mice with an agonistic α-EphA3 antibody inhibits tumor growth by severely disrupting the integrity and function of newly formed tumor stroma and microvasculature. Our data define EphA3 as a novel target for selective ablation of the tumor microenvironment and demonstrate the potential of EphA3 agonists for anticancer therapy. Cancer Res; 74(16); 4470–81. ©2014 AACR.