Published in

Cambridge University Press, Proceedings of the International Astronomical Union, S291(8), p. 480-482, 2012

DOI: 10.1017/s1743921312024581

Links

Tools

Export citation

Search in Google Scholar

On the environments and progenitors of supernova remnants associated with highly magnetized neutron stars

Journal article published in 2012 by Samar Safi-Harb, Harsha Blumer ORCID, Harsha S. Kumar
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe distinction between the high-magnetic field pulsars (HBPs, thought to be mainly rotation-powered) and magnetars (commonly believed to be powered by their super-strong magnetic fields) has been recently blurred with the discovery of magnetar-like activity from the HBP J1846–0258 in the SNR Kes 75. What determines the spin properties of a neutron star at birth and its manifestation as a magnetar-like or more classical pulsar is still not clear. Furthermore, although a few studies have suggested very massive progenitors for magnetars, there is currently no consensus on the progenitors of these objects. To address these questions, we examine their environments by studying or revisiting their securely associated SNRs. Our approach is to: 1) infer the mass of their progenitor stars through X-ray spectroscopic studies of the thermally emitting supernova ejecta, and 2) investigate the physical properties of their hosting SNRs and ambient conditions. We here highlight our detailed studies of two SNRs: G292.2–0.5, associated with the HBP J1119–6127, and Kes 73, associated with the AXP 1E 1841–045, and summarize the current view of the other (handful) HBP/magnetar-SNR associations.