Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 1(292), p. R644-R651, 2007

DOI: 10.1152/ajpregu.00362.2006

Links

Tools

Export citation

Search in Google Scholar

Molecular characterization of water-selective AQP (EbAQP4) in hagfish: Insight into ancestral origin of AQP4

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hagfish (Eptatretus burgeri) are agnathous and are the earliest vertebrates still in existence. Pavement cells adjacent to the mitochondria-rich cells show orthogonal arrays of particles (OAPs) in the gill of hagfish, a known ultrastructural morphology of aquaporin (AQP) in mammalian freeze-replica studies, suggesting that an AQP homolog exists in pavement cells. We therefore cloned water channels from hagfish gill and examined their molecular characteristics. The cloned AQP [E. burgeri AQP4 (EbAQP4)] encodes 288 amino acids, including two NPA motifs and six transmembrane regions. The deduced amino acid sequence of EbAQP4 showed high homology to mammalian and avian AQP4 (rat, 44%; quail, 43%) and clustered with AQP4 subsets by the molecular phylogenetic tree. The osmotic water permeability of Xenopus oocytes injected with EbAQP4 cRNA increased eightfold compared with water-injected controls and was not reversibly inhibited by 0.3 mM HgCl(2). EbAQP4 mRNA expression in the gill was demonstrated by the RNase protection assay; antibody raised against the COOH terminus of EbAQP4 also detected (by Western blot analysis) a major approximately 31-kDa band in the gill. Immunohistochemistry and immunoelectron microscopy showed EbAQP4 localized along the basolateral membranes of gill pavement cells. In freeze-replica studies, OAPs were detected on the protoplasmic face of the split membrane comprising particles 5-6 nm long on the basolateral side of the pavement cells. These observations suggest that EbAQP4 is an ancestral water channel of mammalian AQP4 and plays a role in basolateral water transport in the gill pavement cells.